Scaled Three-Term Conjugate Gradient Methods for Solving Monotone Equations with Application

نویسندگان

چکیده

In this paper, we derived a modified conjugate gradient (CG) parameter by adopting the Birgin and Marti´nez strategy using descent three-term CG direction Newton direction. The proposed is applied suggests robust algorithm for solving constrained monotone equations with an application to image restoration problems. global convergence of established some proper assumptions. Lastly, numerical comparison existing algorithms shows that approach large-scale systems equations. Additionally, can be used solve symmetric system nonlinear as well other relevant classes

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

Norm descent conjugate gradient methods for solving symmetric nonlinear equations

Nonlinear conjugate gradient method is very popular in solving large-scale unconstrained minimization problems due to its simple iterative form and lower storage requirement. In the recent years, it was successfully extended to solve higher-dimension monotone nonlinear equations. Nevertheless, the research activities on conjugate gradient method in symmetric equations are just beginning. This s...

متن کامل

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

On Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations

In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations‎. ‎One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach‎. ‎Each of methods showed fast convergence in special problems and slow convergence in other o...

متن کامل

Application of frames in Chebyshev and conjugate gradient methods

‎Given a frame of a separable Hilbert space $H$‎, ‎we present some‎ ‎iterative methods for solving an operator equation $Lu=f$‎, ‎where $L$ is a bounded‎, ‎invertible and symmetric‎ ‎operator on $H$‎. ‎We present some algorithms‎ ‎based on the knowledge of frame bounds‎, ‎Chebyshev method and conjugate gradient method‎, ‎in order to give some‎ ‎approximated solutions to the problem‎. ‎Then we i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14050936